Technical Data Sheet: Termica Neo 1.0

Highlight of Termica Neo – Simulation of Thermal Behavior of Large Sample Volumes

Purpose	<i>Termica Neo</i> is a software for the simulation of the thermal behavior and thermal safety for chemical reactions and crystallization in solids or liquids in volumes with sizes from centimeters to meters. Main applications are materials with high thermal potential, as well as reactions of curing, cross-linking, sintering and polymer crystallization.
Software	64-bit software
Simulation	 Based on the model-free or model-based kinetics approaches, the software simulates the dependence on time at each point of the reactors for the following parameters: Temperature Conversion Conversion rate Glass transition temperature, T_g, for curing reactions with diffusion control Concentrations of individual reactants in multi-step reactions The simulation uses the environment/surrounding performed for any user-defined temperatur program.
Optimization	Based on the model-free or model-based kinetic approaches, the software can find the surrounding temperature for the reaction behavior defined by the customer like Self-Accelerating Decomposition Temperature (SADT).

Kinectis Neo version 2.5 or later
x64 versions Microsoft Windows 11 or Windows 10
English
Context-sensitive, online help web site
Intel® Core i5 processor 11 Generation (Core i5 11400) or later, 16GB RAM, DirectX 11 compatible graphics, display 1440x1050
Intel® Core i7 processor 11 generation or later, 24 GB RAM, graphics nVidia 1080 GTX or better, display 1920x1200

Technical Data Sheet: Termica Neo 1.0

Data for Simulation	
	Kinetic parameters and equations are based on a previous kinetic evaluation and are loaded directly from the Kinetics Neo project (.KNX2, support by Kinetics Neo Version 2.5 or later); they include:
	Possible data type:
	DSC
	 DSC with diffusion control DTA
	■ TGA
	DEA
	ARC Temperature
	Viscosity Analyiss type:
Reactant	Model-free
	 Model-based with unlimited number of individual reaction steps and their combinations incluing parallel, competing and follow-up reactions
	Heat source:
	Reaction/crystallization ethalpy
	Material library with temperature-dependent physical properties for reactants Specific heat capacity
	 Density
	Thermal conductivity
	Material phase:
	 Solid or viscous liquid with negligible convection
	 Liquid with stirring (no temperature gradient)
	Number of reactants for simulation in one project: unlimited
	Geometry: Slab infinite
	 Stab infinite Cylinder infinite
	Cylinder
	Sphere
Container	Material library with temperature-dependent physical properties for the container: Specific heat capacity
	 Density
	Thermal conductivity
	Surfaces:
	 Each surface contains own container material, container thickness surround material and sur- rounding temperature
Surrounding	Material library with temperature-dependent physical properties for surrounding:
	Heat transfer coefficient for surficial heat exchange
	Emissivity cofficient
	Material library contains special surroundings:
	 Adiabatic (not heat loss) Infinite (infinite heat loss where the container temperature is equal to the surrounding
	temperature)
	Types of surrounding temperature profiles:
	Isothermal
	Dynamic at constant heating
	 Multiple steps Step ice
	Step isoModulated isothermal
	 Modulated local activities Modulated dynamic
	External temperature profiles

Technical Data Sheet: Termica Neo 1.0

Simulations	
Results	 ■ Temperature T ■ Conversion a
	 Conversion rate dα/dt Glass transition temperature T_g for curing reactions with diffusion control Concentraions of individual reactants in multi-step reactions
Optimization	SADT: Self-accelerating decomposition temperature

Visualization Charts and Graphs	
Graphical presentation of data and results	 Two-dimensional: curves for T, α, dα/dt, concentrations, T_g as a function of time at any user-defined point of the volume. Could be presented as the set of curves having different spatial coordinates Two-dimensional chart (for one-dimensional geometry): curves for T, α, dα/dt, concentrations, T_g as a function of spatial coordinate at any user-defined time point. Could be presented as the set of curves having different time values. Three-dimensional: surface for T, α, dα/dt, concentrations, T_g as a function of time and one selected special coordinate, where other facial coordinated are set to constant value. Heatmap for T, α, dα/dt, concentrations, T_g as a function of time and one selected spatial coordinated are set to constant value. Cross-section: Three-dimensional surfaces for T, α, dα/dt, concentrations, T_g as a function of two spatial coordinates at the selected time point. Cross-section: Heatmap for T, α, dα/dt, concentrations, T_g as a function of two spatial coordinates at the selected time point.
Export	 For all data, simulation and optimizations of the following operations are enabled: ASCII export of results Copy graphic to clipboard
Graphical options	 Selection of the visual theme for user interface 2D chart show/hide legend grid zoom bars o select legend, font axis font axis font axis thickness 3D chart orotate 3D suface oshow/hide color surface contour lines wireframe o select gradient/levels color palette orthogonal/perspective projection mode Lighting and opacity effects Heatmap chart oshow/hide color surface contour lines wireframe oselect gradient/levels color palette orthogonal/perspective projection mode Lighting and opacity effects

